hot-fermentation/hot_fermentation.ino

295 lines
9.0 KiB
C++

#include <max6675.h>
#include <Wire.h>
#include <PID_v1.h>
#include <GyverOLED.h>
#include "GyverEncoder.h" // Include the GyverEncoder library
// MAX6675 configuration
int max_SO = 12;
int max_CS = 10;
int max_SCK = 13;
MAX6675 thermocouple(max_SCK, max_CS, max_SO);
// OLED configuration
GyverOLED<SSD1306_128x64> oled;
// Encoder configuration
#define CLK 5
#define DT 6
#define SW 7
Encoder enc1(CLK, DT, SW, TYPE2);
// SSR pin configuration
const int ssrPin = 7;
// Profile structure definition
struct Phase {
int temperature;
int duration; // in minutes
};
struct Profile {
const char* name;
int transitionMinutesPerDegree;
Phase phases[6]; // Maximum of 6 phases per profile
int numPhases;
};
// Profiles definition
Profile profiles[] = {
{"Test", 0, {{49, 1}, {51, 1}}, 2},
{"Пшеница", 1, {{47, 40}, {55, 40}, {65, 20}, {72, 20}, {85, 20}}, 5},
{"Veggies Sous Vide", 0, {{85, 120}}, 1},
{"Фитаза/Протеаза", 2, {{47, 120}, {53, 120}, {65, 150}, {72, 60}, {90, 105}, {50, 60}}, 6},
};
// Global variables for profile selection and execution
int activeProfileIndex = 100; // 100 indicates no profile selected yet
int selectedProfileIndex = 0; // Index of the currently selected profile in the selection mode
Profile activeProfile; // The active profile once selected
// Global variables for current phase, setpoint, and transition state
int currentPhase;
bool isInTransition = false;
bool inSelectionMode = true;
// PID Control variables
double Setpoint, Input, Output;
double Kp = 2, Ki = 0.5, Kd = 0.25;
PID myPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, DIRECT);
// Timing variables
unsigned long phaseStartTime;
unsigned long totalStartTime;
unsigned long ssrLastSwitchTime;
unsigned long totalElapsedTime;
unsigned long totalProcessTime;
unsigned long finishTime = 0;
bool isComplete = false;
const int ssrSwitchInterval = 1000; // SSR switching interval in milliseconds
// Buffer for formatted time strings
char timeBuffer[10];
void setup() {
pinMode(ssrPin, OUTPUT);
Serial.begin(9600);
oled.init(); // Initialize the OLED
oled.clear(); // Clear the display
displaySelection();
}
void loop() {
enc1.tick(); // Mandatory encoder update function
if (inSelectionMode) {
handleProfileSelection(); // Handle profile selection mode
} else {
unsigned long currentTime = millis();
totalElapsedTime = (currentTime - totalStartTime) / 1000; // Total elapsed time in seconds
getPhaseAndTemperature(totalElapsedTime);
Input = (int) thermocouple.readCelsius(); // Cast to integer for display and control
myPID.Compute();
// Switch SSR based on PID output and interval control
if (currentTime - ssrLastSwitchTime > ssrSwitchInterval) {
digitalWrite(ssrPin, Output > 0.5 ? HIGH : LOW);
ssrLastSwitchTime = currentTime;
}
if (isComplete && currentPhase >= activeProfile.numPhases) {
finishTime = currentTime;
}
// Display all phases and highlight the current one
printPhases(currentPhase, currentTime - phaseStartTime, currentTime);
oled.update();
delay(1000); // Update every second
}
}
void handleProfileSelection() {
bool click = enc1.isClick();
bool turn = enc1.isTurn();
if (!click && !turn) {
return;
}
// Handle encoder input for selecting the profile
if (enc1.isRight()) {
selectedProfileIndex = (selectedProfileIndex + 1) % (sizeof(profiles) / sizeof(profiles[0]));
} else if (enc1.isLeft()) {
selectedProfileIndex = (selectedProfileIndex - 1 + (sizeof(profiles) / sizeof(profiles[0]))) % (sizeof(profiles) / sizeof(profiles[0]));
}
displaySelection();
// Start the selected profile on button press
if (click) {
activeProfileIndex = selectedProfileIndex;
activeProfile = profiles[activeProfileIndex];
calculateTotalTime();
inSelectionMode = false; // Switch to execution mode
phaseStartTime = totalStartTime = millis(); // Start the timer
myPID.SetMode(AUTOMATIC);
myPID.SetOutputLimits(0, 1); // SSR is either ON or OFF
digitalWrite(ssrPin, HIGH); // Start with heater on
ssrLastSwitchTime = millis();
}
}
void displaySelection() {
oled.clear();
// Display all profiles with the selected one highlighted
for (int i = 0; i < (int) (sizeof(profiles) / sizeof(profiles[0])); i++) {
if (i == selectedProfileIndex) {
oled.invertText(true); // Highlight the selected profile
}
oled.setCursor(0, i); // Set cursor to the correct row
oled.print(profiles[i].name);
oled.invertText(false); // Reset text inversion for other profiles
}
oled.update();
}
void calculateTotalTime() {
// Calculate total process time, including transitions
totalProcessTime = 0;
for (int i = 0; i < activeProfile.numPhases; i++) {
totalProcessTime += activeProfile.phases[i].duration * 60;
if (i < activeProfile.numPhases - 1) {
int tempDiff = abs(activeProfile.phases[i + 1].temperature - activeProfile.phases[i].temperature);
totalProcessTime += tempDiff * 60 * activeProfile.transitionMinutesPerDegree;
}
}
}
void getPhaseAndTemperature(unsigned long elapsedSeconds) {
unsigned long accumulatedTime = 0;
for (int i = 0; i < activeProfile.numPhases; i++) {
int phaseDuration = activeProfile.phases[i].duration * 60;
// Check for transition
if (i > 0) {
int previousTemp = activeProfile.phases[i - 1].temperature;
int targetTemp = activeProfile.phases[i].temperature;
int tempDiff = abs(targetTemp - previousTemp);
int transitionDuration = tempDiff * 60 * activeProfile.transitionMinutesPerDegree;
if (elapsedSeconds < accumulatedTime + transitionDuration) {
isInTransition = true;
currentPhase = i - 1; // Keep currentPhase as the previous phase
int timeInTransition = elapsedSeconds - accumulatedTime;
Setpoint = previousTemp + (double)timeInTransition / (60 * activeProfile.transitionMinutesPerDegree) * (targetTemp > previousTemp ? 1 : -1);
return;
}
accumulatedTime += transitionDuration;
}
// Check if we're within the current phase
if (elapsedSeconds < accumulatedTime + phaseDuration) {
isInTransition = false;
currentPhase = i;
Setpoint = activeProfile.phases[i].temperature;
return;
}
accumulatedTime += phaseDuration;
}
// If the elapsed time exceeds the total duration, indicate completion
currentPhase = activeProfile.numPhases; // Indicate completion
Setpoint = 45; // Default to 45°C after completion
isInTransition = false;
isComplete = true; // Mark the process as complete
}
void printPhases(int currentPhase, unsigned long phaseElapsedTime, unsigned long currentTime) {
oled.clear();
if (isComplete) {
// Show completion time and current temperature instead of the title
oled.setCursor(0, 0);
oled.invertText(true);
oled.print("Done!");
oled.invertText(false);
oled.print(" ");
formatTime((currentTime - finishTime) / 1000, timeBuffer); // Time since completion
oled.print(timeBuffer);
oled.print(" ");
oled.print((int)Input);
oled.print("c");
} else {
oled.setCursor(0, 0);
oled.print(activeProfile.name);
}
// Display the totals and current state on the OLED
oled.setCursor(18, 1);
formatTime(totalElapsedTime, timeBuffer);
oled.print(timeBuffer);
oled.print(" / ");
formatTime(totalProcessTime, timeBuffer);
oled.print(timeBuffer);
for (int i = 0; i < activeProfile.numPhases; i++) {
if (i == currentPhase && !isComplete) {
oled.invertText(true); // Invert text for the current phase
oled.setCursor(0, i + 2); // Set cursor to the row corresponding to the phase
unsigned long timeRemaining = (activeProfile.phases[i].duration * 60) - (phaseElapsedTime / 1000);
formatTime(timeRemaining, timeBuffer);
oled.print(i + 1);
oled.print(". ");
oled.print((int)Input);
oled.print("c ");
if (fabs(Setpoint - round(Setpoint)) < 0.05) {
oled.print((int)Setpoint); // Print without decimals
} else {
oled.print(Setpoint, 1); // Print with 1 decimal place
}
oled.print("c ");
oled.print(timeBuffer);
} else {
oled.invertText(false); // Normal text for other phases
oled.setCursor(0, i + 2); // Set cursor to the row corresponding to the phase
formatTime(activeProfile.phases[i].duration * 60, timeBuffer);
oled.print(i + 1);
oled.print(". ");
oled.print(activeProfile.phases[i].temperature);
oled.print("c ");
oled.print(timeBuffer);
}
}
oled.invertText(false); // Ensure text inversion is off after the loop
}
void formatTime(long seconds, char* buffer) {
long hours = seconds / 3600;
long mins = (seconds % 3600) / 60;
int secs = seconds % 60;
buffer[0] = '\0'; // Ensure the buffer is empty
if (hours > 0) {
sprintf(buffer + strlen(buffer), "%ldh", hours);
}
if (mins > 0) {
sprintf(buffer + strlen(buffer), "%ldm", mins);
}
if (secs > 0) {
sprintf(buffer + strlen(buffer), "%ds", secs);
}
}